Biomech-Sim-Toolbox 1
Toolbox for movement simulation and analysis
Loading...
Searching...
No Matches
Functions
calculateOLP.m File Reference

Function to caluclate the OLP Regression. More...

Functions

function calculateOLP (in x, in y)
 Function to caluclate the OLP Regression.
 

Detailed Description

Function to caluclate the OLP Regression.

Author
Marlies Nitschke
Date
December, 2018

Function Documentation

◆ calculateOLP()

function calculateOLP ( in  x,
in  y 
)

Function to caluclate the OLP Regression.

The OLP regression analysis exposes systematic differences of two methods instead of similarities. The coefficient considers that both methods can be affected by random errors.

\( \mathbf{x} = \left[x_1,x_2,\ldots,x_N \right]^T \)

\( \mathbf{y} = \left[y_1,y_2,\ldots,y_N \right]^T \)

RMSE = \( \sqrt {\frac{1}{N} \displaystyle\sum_{i=1}^{N}\displaystyle (y_i - (\beta x_i + \alpha))^2 } \)

\( \alpha = \bar{y} - \beta\bar{x} \)

\( \beta = \displaystyle\sqrt {\frac {\beta_y}{\beta_x}} \)

\( \beta_y = \displaystyle\frac {\displaystyle\sum_{i=1}^{N}(x_i - \bar{x})(y_i - \bar{y}) }{\displaystyle\sum_{i=1}^{N}(x_i - \bar{x})^2} \)

\( \beta_x = \displaystyle\frac {\displaystyle\sum_{i=1}^{N}(x_i - \bar{x})(y_i - \bar{y}) }{\displaystyle\sum_{i=1}^{N}(y_i - \bar{y})^2} \)

Relative RMSE = \( \displaystyle\frac{RMSE}{\displaystyle\frac{1}{2} \Bigg\{ [\max_{0<t<T}(x_i(t)) - \min_{0<t<T}(x_i(t)) ] + [\max_{0<t<T}(y_i(t)) - \min_{0<t<T}(y_i(t)) ] \Bigg\} } * 100\% \)

[ out_RMSE, out_beta, out_alpha, out_r,out_DRMSE] = calculateOLP(x, y)
function calculateOLP(in x, in y)
Function to caluclate the OLP Regression.
Parameters
xDouble Vector: x signal
yDouble Vector: y signal
Return values
out_RMSEDouble: RMSE : between 0 and 1
out_betaDouble: slope: any real value
out_alphaDouble: y-intercept: any real value
out_rDouble: PPMCC (Pearson's r): between -1 and 1
out_DRMSEDouble: relative RMSE: between -100% and 100%