Biomech-Sim-Toolbox 1
Toolbox for movement simulation and analysis
|
Function to caluclate the OLP Regression. More...
Functions | |
function | calculateOLP (in x, in y) |
Function to caluclate the OLP Regression. | |
Function to caluclate the OLP Regression.
function calculateOLP | ( | in | x, |
in | y | ||
) |
Function to caluclate the OLP Regression.
The OLP regression analysis exposes systematic differences of two methods instead of similarities. The coefficient considers that both methods can be affected by random errors.
\( \mathbf{x} = \left[x_1,x_2,\ldots,x_N \right]^T \)
\( \mathbf{y} = \left[y_1,y_2,\ldots,y_N \right]^T \)
RMSE = \( \sqrt {\frac{1}{N} \displaystyle\sum_{i=1}^{N}\displaystyle (y_i - (\beta x_i + \alpha))^2 } \)
\( \alpha = \bar{y} - \beta\bar{x} \)
\( \beta = \displaystyle\sqrt {\frac {\beta_y}{\beta_x}} \)
\( \beta_y = \displaystyle\frac {\displaystyle\sum_{i=1}^{N}(x_i - \bar{x})(y_i - \bar{y}) }{\displaystyle\sum_{i=1}^{N}(x_i - \bar{x})^2} \)
\( \beta_x = \displaystyle\frac {\displaystyle\sum_{i=1}^{N}(x_i - \bar{x})(y_i - \bar{y}) }{\displaystyle\sum_{i=1}^{N}(y_i - \bar{y})^2} \)
Relative RMSE = \( \displaystyle\frac{RMSE}{\displaystyle\frac{1}{2} \Bigg\{ [\max_{0<t<T}(x_i(t)) - \min_{0<t<T}(x_i(t)) ] + [\max_{0<t<T}(y_i(t)) - \min_{0<t<T}(y_i(t)) ] \Bigg\} } * 100\% \)
x | Double Vector: x signal |
y | Double Vector: y signal |
out_RMSE | Double: RMSE : between 0 and 1 |
out_beta | Double: slope: any real value |
out_alpha | Double: y-intercept: any real value |
out_r | Double: PPMCC (Pearson's r): between -1 and 1 |
out_DRMSE | Double: relative RMSE: between -100% and 100% |